Data Association for Multi-Object Tracking via Deep Neural Networks

Author:

Yoon Kwangjin,Kim Du,Yoon Young-Chul,Jeon MoonguORCID

Abstract

With recent advances in object detection, the tracking-by-detection method has become mainstream for multi-object tracking in computer vision. The tracking-by-detection scheme necessarily has to resolve a problem of data association between existing tracks and newly received detections at each frame. In this paper, we propose a new deep neural network (DNN) architecture that can solve the data association problem with a variable number of both tracks and detections including false positives. The proposed network consists of two parts: encoder and decoder. The encoder is the fully connected network with several layers that take bounding boxes of both detection and track-history as inputs. The outputs of the encoder are sequentially fed into the decoder which is composed of the bi-directional Long Short-Term Memory (LSTM) networks with a projection layer. The final output of the proposed network is an association matrix that reflects matching scores between tracks and detections. To train the network, we generate training samples using the annotation of Stanford Drone Dataset (SDD). The experiment results show that the proposed network achieves considerably high recall and precision rate as the binary classifier for the assignment tasks. We apply our network to track multiple objects on real-world datasets and evaluate the tracking performance. The performance of our tracker outperforms previous works based on DNN and comparable to other state-of-the-art methods.

Funder

Institute for Information and communications Technology Promotion

Gwangju Institute of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Learning social etiquette: Human trajectory understanding in crowded scenes;Robicquet,2016

2. Visual multiple‐object tracking for unknown clutter rate

3. Object Detection with Discriminatively Trained Part-Based Models

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3