Phenological Changes and Their Influencing Factors under the Joint Action of Water and Temperature in Northeast Asia

Author:

Wang Jia1ORCID,Meng Suxin1,Zhu Weihong123,Xu Zhen123ORCID

Affiliation:

1. College of Geography and Ocean Sciences, Yanbian University, Yanji 133002, China

2. Tumen River Basin Wetland Ecosystem Field Scientific Research and Observation Station, Yanji 133002, China

3. Jilin Provincial International Joint Research Center of Tumen River Basin Wetland and Ecology, Yanji 133002, China

Abstract

Phenology is an important indicator for how plants will respond to environmental changes and is closely related to biomass production. Due to global warming and the emergence of intermittent warming, vegetation in northeast Asia is undergoing drastic changes. Understanding vegetation phenology and its response to climate change is of great significance to understanding the changes in the sustainable development of ecosystems. Based on Global Inventory Modelling and Mapping Studies (GIMMS), normalized difference vegetation index (NDVI)3g data, and the mean value of phenological results extracted by five methods, combined with climatic data, this study analyzed the temporal changes in phenology and the responses to climatic factors of five vegetation types of broad-leaved, needle-leaf, mixed forests, grassland, and cultivated land in northeast Asia over 33 years (1982–2014). The results showed that, during the intermittent warming period (1999–2014), the start of the growing season (SOS) advancement (Julian days) trend of all vegetation types decreased. During 1982–2014, the average temperature sensitivity of the SOS was 1.5 d/°C. The correlation between the SOS and the pre-season temperature is significant in northeast Asia, while the correlation between the EOS and the pre-season precipitation is greater than that between temperature and radiation. The impact of radiation changes on the SOS is relatively small.

Funder

National Natural Science Foundation of China

Jilin Provincial Natural Science Foundation

Jilin Provincial Key Laboratory

Jilin International Joint Research Center

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3