Affiliation:
1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
Abstract
Direction-of-arrival (DOA) estimation is still a pivotal research direction in array signal processing. Traditional algorithms based on the signal subspace and compressed sensing theory usually suffer from off-grid and computational complexity. Deep-learning-based methods usually face difficulty in obtaining labeled datasets. With the development of array technology, sparse sensor arrays can effectively reduce the number of sensors, which in turn reduces the complexity of the hardware. Therefore, effective DOA estimation algorithms for sparse sensor arrays need to be further investigated. An unsupervised deep learning method is proposed here to address the above issues. A training model was built based on the residual network structure. The DOA estimation was implemented using Vandermonde decomposition. Finally, the experimental findings confirmed the efficacy of the proposed algorithms presented in this article.
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献