Affiliation:
1. Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
2. Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada
Abstract
The extrapolation of forest structural attributes from LiDAR has traditionally been restricted to local or regional scales, hindering a thorough assessment of single-year versus time series predictors across expansive spatial scales. We extrapolated the vertical complexity captured by the Land, Vegetation, and Ice Sensor (LVIS) full-wave form LiDAR of boreal forests in the Alaska–Yukon–Northwest Territories region, utilizing predictors from Landsat images from 1989 to 2019. This included both single-year and long-term estimates of vegetation indices, alongside constant factors like terrain slope and location. Random forest regression models comparing the single-year and 15-year and 30-year time series models were applied. Additionally, the potential of estimating horizontal forest complexity from vertical complexity was explored using a moving window approach in the Kluane Valley. While the extended time series marginally enhanced model accuracy, a fine-tuned single-year model proved superior (R2 = 0.84, relative RRMSE = 8.4%). In estimating the horizontal complexity, the variance in a 5 × 5 moving window displayed the most promising results, aligning with traditional horizontal structure measures. Single-year Landsat models could potentially surpass time series models in predicting forest vertical complexity, with the added capability to estimate horizontal complexity using variance in a moving window approach.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Research Chairs Program
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献