Impact of a Severe Dust Event on Diurnal Behavior of Surface Water Temperature in Subtropical Lake Kinneret

Author:

Kishcha Pavel1ORCID,Lechinsky Yury2,Starobinets Boris1

Affiliation:

1. Department of Geophysics, Tel Aviv University, Tel Aviv 69978, Israel

2. Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal 1495000, Israel

Abstract

Dust impact on lake surface water temperature (SWT) over lakes, located in the Eastern Mediterranean, has not yet been discussed in previous publications. We investigated the effect of an extreme dust intrusion on the diurnal behavior of SWT in Lake Kinneret, appearing from 7–9 September 2015. This was carried out using METEOSAT and in-situ observations of SWT. In the presence of dust, METEOSAT SWT decreased along with increasing dust pollution both in the daytime and nighttime. This contradicted in-situ measurements of SWT at a depth of 20 cm which increased to 1.2 °C in the daytime and to 1 °C in the nighttime, compared to SWT on clear-sky September 6. The in-situ radiometer measurements of upwelling longwave radiation (ULWR) provided us with a criterion for assessing the reliability of METEOSAT and in-situ observations of SWT. Using this criterion, we found that, in the presence of dust, in-situ SWT was in line, whereas METEOSAT SWT contradicted in-situ ULWR. Considering in-situ ULWR is determined by actual SWT, we concluded that, in the presence of dust, in-situ SWT were capable of reproducing Kinneret SWT, while METEOSAT was incapable of doing so. An observed increase in daytime air temperature during the dust intrusion contributed to an increase in daytime Kinneret SWT. In the presence of maximal dust pollution on September 8, atmospheric humidity (ρv) exceeded by 30% that on clear-sky September 6. This increase in ρv was observed in the absence of moisture advection indicating that dust intrusion can cause additional evaporation from Lake Kinneret and, consequently, intensify its drying up.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3