First Assessment of Bistatic Geometric Calibration and Geolocation Accuracy of Innovative Spaceborne Synthetic Aperture Radar LuTan-1

Author:

Mou Jingwen12ORCID,Wang Yu1ORCID,Hong Jun1,Wang Yachao1,Wang Aichun3,Sun Shiyu1,Liu Guikun1

Affiliation:

1. National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. China Center for Resources Satellite Data and Application, Beijing 100049, China

Abstract

LuTan-1 (LT-1) is a bistatic synthetic aperture radar (BiSAR) system consisting of two identical L-band SAR satellites. The bistatic mode of LT-1 plays a critical role in generating high-precision digital elevation models (DEMs), which requires precise geometric calibration of initial range and azimuth times for both SARs to ensure the reliability and quality of geolocation. However, existing geometric calibration methods predominantly focus on monostatic SAR systems, with limited literature on slave SAR calibration in bistatic systems. This research addresses this gap by establishing geometric calibration models for both SARs based on signal echo history and the range–Doppler model. The geometric errors are effectively resolved using corner reflector data from Xinjiang, China. Through statistical analysis of LT-1 SAR images acquired between July and November in bistatic mode, this paper has demonstrated range delay accuracy of better than 5 ns and azimuth time accuracy of better than 0.1 ms. This level of precision translates into a positional accuracy better than 0.8 m. The proposed models have been successfully applied to geometric calibration, providing precise geolocation for LT-1, thus enhancing its utility for a wide range of Earth observation applications. This paper is the first endeavor to present the assessment of the geometric calibration and geolocation accuracy of LT-1 and discuss the results of the bistatic geometric calibration of the master and slave SARs in a BiSAR formation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. A tutorial on synthetic aperture radar;Moreira;IEEE Geosci. Remote Sens. Mag.,2013

2. Stability analysis of geometric geolocation accuracy of YG-13 satellite;Zhang;IEEE Trans. Geosci. Remote Sens.,2020

3. An Improved Geometric Calibration Model for Spaceborne Sar Systems with a Case Study of Large-Scale Gaofen-3 Images;Feng;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2022

4. Location of spaceborne SAR imagery;Curlander;IEEE Trans. Geosci. Remote Sens.,1982

5. Evaluation of terrain models for the geocoding and terrain correction, of synthetic aperture radar (SAR) image;Wivell;IEEE Trans. Geosci. Remote Sens.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3