Abstract
A non-contact tactile stimulation system using a time-varying magnetic field was developed. The system comprises a control unit, power unit, output unit, and actuator. The control unit adjusts stimulation parameters, particularly the signal intensity and frequency. The power unit produces high voltages for generating the magnetic field, whereas the output unit transmits the energy generated according to the signal from the control unit to the actuator. A spiral coil actuator generates the magnetic field. To validate the effectiveness of the system, preliminary experiments on 10 male adults without neurological disorders (23.2 ± 3.05 years) were conducted. Magnetic field stimuli were presented to the right palm of the subjects at three different frequencies (10, 30, and 50 Hz), and corresponding electroencephalogram (EEG) signals were measured simultaneously. Event-related potential (ERP) analysis showed that N100 and P300 components were identified in somatosensory areas. Subjective evaluations revealed that feelings such as “tingling,” “trembling,” “tapping,” and “percussing” were induced. Moreover, as the stimulus frequency changes, differences may occur in induced feeling. The system uses a time-varying magnetic field, which not only induces tactile stimulation without contact but also has trans-object characteristics that can present tactile sensations, even when there is an obstacle between an actuator and skin.
Funder
National Research Foundation of Korea
Subject
Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Haptic Source-Effector: Full-Body Haptics via Non-Invasive Brain Stimulation;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11
2. Interactive Benefits from Switching Electrical to Magnetic Muscle Stimulation;Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology;2023-10-29