Novel Design for Thermal Management of PV Cells in Harsh Environmental Conditions

Author:

Ahmad Nasser,Khandakar Amith,El-Tayeb Amir,Benhmed Kamel,Iqbal AtifORCID,Touati Farid

Abstract

The abundance of solar energy is a blessing in the Arabian Peninsula, where more than 2000 kWh/m2 density has been recorded annually. This has resulted in sincere consideration of PV harvesting in the energy matrix and smart grid. However, artefacts such as degradation of PV efficiency due to the high temperature effect have to be addressed. This paper presents a novel design of a PV cooling system using water to mitigate the effect of high temperature. Several experiments have been conducted, and the results have been analyzed. It has been found that the collected water from the panel after 40 min of cooling gained a temperature of 10 °C approximately, during December 2016. Eventually, the efficiency was improved by 10.35% (without using MPPT) using water at ambient temperature (24 °C) compared to the non-cooled panel. Moreover, the temperature of the panel during solar peak hours dropped from 64.3 °C to 32 °C and from 59 °C to 27 °C in 3 min for the back and front surface, respectively. These results, which are the first of their kind in Qatar, constitute good incentives and pave the way for further investigation to enhance PV efficiency in harsh environments. This would be of paramount significance, especially for scaling up PV deployment, as is planned in Qatar and GCC countries in their 2030 vision.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3