Online Evaluation Method for Low Frequency Oscillation Stability in a Power System Based on Improved XGboost

Author:

Hu Wenping,Liang Jifeng,Jin Yitao,Wu Fuzhang,Wang Xiaowei,Chen Ersong

Abstract

Low frequency oscillation in an interconnected power system is becoming an increasingly serious problem. It is of great practical significance to make online evaluation of actual power grid’s stability. To evaluate the stability of the power system quickly and accurately, a low frequency oscillation stability evaluation method based on an improved XGboost algorithm and power system random response data is proposed in this paper. Firstly, the original input feature set describing the dynamic characteristics of the power system is established by analyzing the substance of low frequency oscillation. Taking the random response data of power system including the disturbance end time feature and the dynamic feature of power system as the input sample set, the wavelet threshold is applied to improve its effectiveness. Secondly, using the eigenvalue analysis method, different damping ratios are selected as threshold values to judge the stability of the system low-frequency oscillation. Then, the supervised training with improved XGboost algorithm is performed on the characteristics of stability. On this basis, the training model is obtained and applied to online low frequency oscillation stability evaluation of a power system. Finally, the simulation results of the eight-machine 36-node test system and Hebei southern power grid show that the proposed low frequency oscillation online evaluation method has the features of high evaluation accuracy, fast evaluation speed, low error rate of unstable sample evaluation, and strong anti-noise ability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3