Abstract
In this work, for the first time, the feasibility of obtaining carbonized refuse-derived fuel (CRDF) pelletization from municipal solid waste (MSW) was shown. Production of CRDF by torrefaction of MSW could be the future of recycling technology. The objective was to determine the applied pressure needed to produce CRDF pellets with compressive strength (CS) comparable to conventional biomass pellets. Also, the hypothesis that a binder (water glass (WG)) applied to CRDF as a coating can improve CS was tested. The pelletizing was based on the lab-scale production of CRDF pellets with pressure ranging from 8.5 MPa to 76.2 MPa. The resulting CS pellets increased from 0.06 MPa to 3.44 MPa with applied pelletizing pressure up to the threshold of 50.8 MPa, above which it did not significantly improve (p < 0.05). It was found that the addition of 10% WG to 50.8 MPa CRDF pellets or coating them with WG did not significantly improve the CS (p < 0.05). It was possible to produce durable pellets from CRDF. The CS was comparable to pine pellets. This research advances the concept of energy recovery from MSW, particularly by providing practical information on densification of CRDF originating from the torrefaction of the flammable fraction of MSW–refuse-derived fuel. Modification of CRDF through pelletization is proposed as preparation of lower volume fuel with projected lower costs of its storage and transportation and for a wider adoption of this technology.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference53 articles.
1. World Energy Outlookhttp://www.iea.org/media/weowebsite/2017/Chap1_WEO2017.pdf
2. Waste management 2030+https://waste-management-world.com/a/waste-management
3. The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel
4. Properties of biochar
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献