Chemical Constituents and Molecular Mechanism of the Yellow Phenotype of Yellow Mushroom (Floccularia luteovirens)

Author:

Gan XiaolongORCID,Bao Xuemei,Liu Baolong,Li YunORCID,Cao Dong,Zhang Hg,Zong YuanORCID

Abstract

(1) Background: Yellow mushroom (Floccularia luteovirens) is a natural resource that is highly nutritional, has a high economic value, and is found in Northwest China. Despite its value, the chemical and molecular mechanisms of yellow phenotype formation are still unclear. (2) Methods: This study uses the combined analysis of transcriptome and metabolome to explain the molecular mechanism of the formation of yellow mushroom. Subcellular localization and transgene overexpression techniques were used to verify the function of the candidate gene. (3) Results: 112 compounds had a higher expression in yellow mushroom; riboflavin was the ninth most-expressed compound. HPLC showed that a key target peak at 23.128 min under visible light at 444 nm was Vb2. All proteins exhibited the closest relationship with Agaricus bisporus var. bisporus H97. One riboflavin transporter, CL911.Contig3_All (FlMCH5), was highly expressed in yellow mushrooms with a different value (log2 fold change) of −12.98, whereas it was not detected in white mushrooms. FlMCH5 was homologous to the riboflavin transporter MCH5 or MFS transporter in other strains, and the FlMCH5-GFP fusion protein was mainly located in the cell membrane. Overexpression of FlMCH5 in tobacco increased the content of riboflavin in three transgenic plants to 26 μg/g, 26.52 μg/g, and 36.94 μg/g, respectively. (4) Conclusions: In this study, it is clear that riboflavin is the main coloring compound of yellow mushrooms, and FlMCH5 is the key transport regulatory gene that produces the yellow phenotype.

Funder

Science and Technology Department of Qinghai Province

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3