Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites

Author:

Chan Kwan-Shing1,Leung Shu-Kei1,Wong Sammie Sum-Yi1,Chan Shui-Shing1,Suen Dawson Wai-Shun1,Tsang Chi-Wing1ORCID,Chan Cho-Yin1

Affiliation:

1. Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong (THEi), Hong Kong 999077, China

Abstract

Due to high consumption and non-renewable nature of fossil fuels, rapid development of potential renewable energies such as biofuel derived from microalgae is necessary for achieving the goals of sustainable growth and carbon neutrality. However, the high energy consumption required for microalgal biomass harvesting is regarded as a major obstacle for large-scale microalgal biofuel production. In the present study, the marine green microalgae Tetraselmis sp. was used to investigate a rapid and energy-efficient biomass collection method among different methods such as gravity sedimentation, auto-flocculation (at target pH), flocculation by polymers followed by magnetic separation, and centrifugation. The results showed that sufficient high cell densities of microalgae were obtained under the optimized growth conditions after 21 days of cultivation, and the microalgae could be easily flocculated and collected by magnetic separation using synthesized magnetic nanocomposites. The results also showed that among the different methods, magnetic separation was more efficient for biomass harvesting because of its simple and fast processing steps as well as low energy consumption. However, further investigation on different target microalgal species and their cultivation conditions, such as salinity and medium pH, will be required before application for large-scale biofuel production in the future.

Funder

Hong Kong Research Grants Council–Faculty Development Scheme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3