Performance Evaluation of Large-Scale Green Roofs Based on Qualitative and Quantitative Runoff Modeling Using MUSICX

Author:

Nguyen Cuong Ngoc1ORCID,Tariq Muhammad Atiq Ur Rehman12ORCID,Browne Dale3,Muttil Nitin12ORCID

Affiliation:

1. Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia

2. College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia

3. E2DesignLab, PO Box 19, Darling South VIC 3145, Australia

Abstract

Green roofs (GR) are known as one of the most effective water-sensitive urban design (WSUD) strategies to deal with numerous environmental and social issues that urbanized cities face today. The overall quality of research on GRs has significantly improved and an increasing trend is observed in the amount of research over the last decade. Among several approaches, the application of modeling tools is observed to be an effective method to simulate and evaluate the performance of GRs. Given that studies on GRs at a catchment scale are limited, this paper aims to provide a simple but effective framework for estimating the catchment-scale impacts of GR on runoff quantity and quality. MUSICX, an Australian-developed software that possesses the advantages of a conceptual model, is chosen as the modeling tool in this study. While MUSICX has built-in meteorological templates for Australian regions, this tool also supports several climate input file formats for application by modelers in other parts of the world. This paper presents two different modeling approaches using the Land Use node and Bioretention node in MUSICX. The steps used for model calibration are also provided in this paper. The modeling results present the annual reductions in runoff volume, total suspended solid (TSS), total phosphate (TP), and total nitrogen (TN) load. The largest reductions of roughly 30% per year were observed in runoff volume and TN load. The annual runoff reduction rate reported in this study is close to that of other published results. Similar research outcomes quantifying the benefits of GRs play a major role in facilitating the widespread implementation of GRs due to the awareness of both positive and negative impacts of GRs. Future studies are recommended to concentrate on modeling the impacts of implementing GRs at a large scale (i.e., scales exceeding the single-building scale) to fill the research gaps and enhance the modeling accuracy.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the hydrological benefits of green roof systems: applications and future needs;Environmental Science: Water Research & Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3