Stress-Induced, p53-Mediated Tumor Growth Inhibition of Melanoma by Modulated Electrohyperthermia in Mouse Models without Major Immunogenic Effects

Author:

Besztercei Balázs,Vancsik Tamás,Benedek Anett,Major Enikő,Thomas Mbuotidem J.,Schvarcz Csaba A.,Krenács Tibor,Benyó Zoltán,Balogh Andrea

Abstract

Modulated electrohyperthermia (mEHT), an innovative complementary technique of radio-, chemo-, and targeted oncotherapy modalities, can induce tumor apoptosis and contribute to a secondary immune-mediated cancer death. Here, we tested the efficiency of high-fever range (~42 °C) mEHT on B16F10 melanoma both in cell culture and allograft models. In vivo, mEHT treatment resulted in significant tumor size reduction when repeated three times, and induced major stress response as indicated by upregulated cytoplasmic and cell membrane hsp70 levels. Despite the increased PUMA and apoptosis-inducing factor 1, and moderate rise in activated-caspase-3, apoptosis was not significant. However, phospho-H2AX indicated DNA double-strand breaks, which upregulated p53 protein and its downstream cyclin-dependent kinase inhibitors p21waf1 and p27kip. Combined in vitro treatment with mEHT and the p53 activator nutlin-3a additively reduced cell viability compared to monotherapies. Though mEHT promoted the release of damage-associated molecular pattern (DAMP) damage signaling molecules hsp70, HMGB1 and ATP to potentiate the tumor immunogenicity of melanoma allografts, it reduced MHC-I and melan-A levels in tumor cells. This might explain why the number of cytotoxic T cells was moderately reduced, while the amount of natural killer (NK) cells was mainly unchanged and only macrophages increased significantly. Our results suggest that mEHT-treatment-related tumor growth control was primarily mediated by cell-stress-induced p53, which upregulated cyclin-dependent kinase inhibitors. The downregulated tumor antigen-presenting machinery may explain the reduced cytotoxic T-cell response despite increased DAMP signaling. Decreased tumor antigen and MHC-I levels suggest that natural killer (NK) cells and macrophages were the major contributors to tumor eradication.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3