Durum Wheat Stress Tolerance Induced by Endophyte Pantoea agglomerans with Genes Contributing to Plant Functions and Secondary Metabolite Arsenal

Author:

Cherif-Silini Hafsa,Thissera Bathini,Bouket Ali ChenariORCID,Saadaoui Nora,Silini Allaoua,Eshelli Manal,Alenezi Faizah N.,Vallat Armelle,Luptakova Lenka,Yahiaoui Bilal,Cherrad Semcheddine,Vacher Sebastien,Rateb Mostafa E.ORCID,Belbahri LassaadORCID

Abstract

In the arid region Bou-Saâda at the South of Algeria, durum wheat Triticum durum L. cv Waha production is severely threatened by abiotic stresses, mainly drought and salinity. Plant growth-promoting rhizobacteria (PGPR) hold promising prospects towards sustainable and environmentally-friendly agriculture. Using habitat-adapted symbiosis strategy, the PGPR Pantoea agglomerans strain Pa was recovered from wheat roots sampled in Bou-Saâda, conferred alleviation of salt stress in durum wheat plants and allowed considerable growth in this unhostile environment. Strain Pa showed growth up to 35 °C temperature, 5–10 pH range, and up to 30% polyethylene glycol (PEG), as well as 1 M salt concentration tolerance. Pa strain displayed pertinent plant growth promotion (PGP) features (direct and indirect) such as hormone auxin biosynthesis, production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia and phosphate solubilization. PGPR features were stable over wide salt concentrations (0–400 mM). Pa strain was also able to survive in seeds, in the non-sterile and sterile wheat rhizosphere, and was shown to have an endophytic life style. Phylogenomic analysis of strain Pa indicated that Pantoea genus suffers taxonomic imprecision which blurs species delimitation and may have impacted their practical use as biofertilizers. When applied to plants, strain Pa promoted considerable growth of wheat seedlings, high chlorophyll content, lower accumulation of proline, and favored K+ accumulation in the inoculated plants when compared to Na+ in control non-inoculated plants. Metabolomic profiling of strain Pa under one strain many compounds (OSMAC) conditions revealed a wide diversity of secondary metabolites (SM) with interesting salt stress alleviation and PGP activities. All these findings strongly promote the implementation of Pantoea agglomerans strain Pa as an efficient biofertilizer in wheat plants culture in arid and salinity-impacted regions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3