Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study

Author:

Qiu Jun,Li Guoqing,Liu Dongliang,Jiang Shan,Wang Guifang,Chen Ping,Zhu Xiangnan,Yao Geng,Liu Xiaodong,Lyu Xianjun

Abstract

Four kinds of Ca-montmorillonite with different layer charge density were used to study the effect of charge density on their hydration properties by molecular dynamics simulation and experiments. The research results of Z-density distribution of water molecules, Hw (hydrogen in water molecules), and Ca in the interlayer of montmorillonite show that the hydration properties of montmorillonite are closely related to its layer charge density. If the charge density is low, the water molecules in the interlayers are mainly concentrated on the sides of the central axis about –1.3 Å and 1.5 Å. As the charge density increases from 0.38semi-cell to 0.69semi-cell, the water molecules are distributed −2.5 Å and 2.4 Å away from the siloxane surface (Si-O), the concentration of water molecules near the central axis decreases, and at the same time, Ca2+ appears to gradually shift from the vicinity of the central axis to the Si-O surface on both sides in the montmorillonite layer. The simulation results of the radial distribution function (RDF) of the Ca-Hw, Ca-Ow (oxygen in water molecules), and Ca-Ot (the oxygen in the tetrahedron) show that the Ca2+ and Ow are more tightly packed together than that of Hw; with the increase of the charge density, due to the fact that the negative charge sites on the Si-O surface increase, under the action of electrostatic attraction, some of the Ca2+ are pulled towards the Si-O surface, which is more obvious when the layer charge density of the montmorillonite is higher. The results of the RDF of the Ot-Hw show that with the increase of charge density, the number of hydrogen bonds formed by Ot and Hw in the interlayers increase, and under the action of hydrogen bonding force, the water molecules near the central axis are pulled towards the two sides of Si-O surface. As a result, the arrangement of water molecules is more compact, and the structure is obvious. Correspondingly, the self-diffusion coefficient shows that the higher the layer charge density, the lower the self-diffusion coefficient of water molecules in interlayers is and the worse the hydration performance of montmorillonite. The experimental results of the experiments fit well with the above simulation results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference35 articles.

1. Modified Clays and Clays Minerals;Bergaya,2008

2. Ab initio molecular dynamics study of the hydration of Li(+), Na(+) and K(+) in a montmorillonite model. Influence of isomorphic substitution;Pierre;Phys. Chem. Chem. Phys.,2009

3. Quantitative Determination of Isomorphous Substitutions on Clay Mineral Surfaces through AFM Imaging: A Case of Mica;Zhang;Colloids Surf. A Physicochem. Eng. Asp.,2017

4. Montmorillonite modified with unconventional surfactants from the series of octylammonium-based cations: Structural characterization and hydration properties

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3