Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios

Author:

Hernández-Atencia Yelena1,Peña Luis E.2ORCID,Muñoz-Ramos Jader3ORCID,Rojas Isabel2,Álvarez Alexander1ORCID

Affiliation:

1. Research Group AQUA, Faculty of Civil Engineering, Universidad Cooperativa de Colombia, Calle 10 1-120 Edificio Urrutia, 730004 Ibagué, Colombia

2. Civil Engineering Program, Faculty of Engineering, Universidad de Ibagué, Carrera 22 Calle 67 B/Ambalá, 730001 Ibagué, Colombia

3. Department of Engineering, Faculty of Forest Engineering, Universidad del Tolima, Barrio Santa Helena Parte Alta, 730006299 Ibagué, Colombia

Abstract

Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physical vulnerability. This study aims to evaluate the effect of land-use evolution from 1976 to 2017 on the physical vulnerability of structures exposed to floods in the Combeima cathment, Colombia, proposing two novel approaches: (i) based on soil infiltration capacity variation (CN) in the basin and changes in stream flow velocity (v), (ii) through soil water storage variation in the root zone (Hu). Hydrological and hydraulic modeling and the implementation of four physical vulnerability assessment methods were performed using GIS analysis. Findings indicate that simplifying physical vulnerability estimations through CN, Hu, and v variations in catchments and at cross-section resolutions is possible, allowing a detailed analysis of the land-use change effect on the vulnerability of structures. The scaling behavior of the physical vulnerability of structures was identified when Hu is defined as a scale variable and, similarly, concerning flow velocity in the stream. Therefore, applying the power law could be useful in planning processes with limited information.

Funder

Universidad Cooperativa de Colombia

Universidad de Ibagué

Government of Tolima

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3