A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings

Author:

Kang Yuxiang1,Chen Guo2,Wang Hao3,Pan Wenping1,Wei Xunkai3

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. Beijing Aeronautical Engineering Technical Research Center, Beijing 100076, China

Abstract

To address the problem of low fault diagnosis accuracy caused by insufficient fault samples of rolling bearings, a dual-input deep anomaly detection method with zero fault samples is proposed for early fault warning of rolling bearings. First, the main framework of dual-input feature extraction based on a convolutional neural network (CNN) is established, and the two outputs of the main frame are subjected to the autoencoder structure. Then, the secondary feature extraction is performed. At the same time, the experience pool structure is introduced to improve the feature learning ability of the network. A new objective loss function is also proposed to learn the network parameters. Then, the vibration acceleration signal is preprocessed by wavelet to obtain multiple signals in different frequency bands, and the two signals in the high-frequency band are two-dimensionally encoded and used as the network input. Finally, the unsupervised learning of the model is completed on five sets of actual full-life rolling bearing fault data sets relying only on some samples in a normal state. The verification results show that the proposed method can realize earlier than the RMS, Kurtosis, and other features. The early fault warning and the accuracy rate of more than 98% show that the method is highly capable of early fault warning and anomaly detection.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3