Linear System Identification-Oriented Optimal Tampering Attack Strategy and Implementation Based on Information Entropy with Multiple Binary Observations

Author:

Bai Zhongwei1,Yu Peng1,Liu Yan12,Guo Jin12

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China

Abstract

With the rapid development of computer technology, communication technology, and control technology, cyber-physical systems (CPSs) have been widely used and developed. However, there are massive information interactions in CPSs, which lead to an increase in the amount of data transmitted over the network. The data communication, once attacked by the network, will seriously affect the security and stability of the system. In this paper, for the data tampering attack existing in the linear system with multiple binary observations, in the case where the estimation algorithm of the defender is unknown, the optimization index is constructed based on information entropy from the attacker’s point of view, and the problem is modeled. For the problem of the multi-parameter optimization with energy constraints, this paper uses particle swarm optimization (PSO) to obtain the optimal data tampering attack solution set, and gives the estimation method of unknown parameters in the case of unknown parameters. To implement the real-time improvement of online implementation, the BP neural network is designed. Finally, the validity of the conclusions is verified through numerical simulation. This means that the attacker can construct effective metrics based on information entropy without the knowledge of the defense’s discrimination algorithm. In addition, the optimal attack strategy implementation based on PSO and BP is also effective.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3