Hybrid Machine Learning Algorithms to Evaluate Prostate Cancer

Author:

Morakis Dimitrios1,Adamopoulos Adam1ORCID

Affiliation:

1. Medical Physics Lab., Department of Medicine, School of Health Sciences, Democritus University of Thrace, University Campus of Alexandroupolis, 68100 Alexandroupoli, Greece

Abstract

The adequacy and efficacy of simple and hybrid machine learning and Computational Intelligence algorithms were evaluated for the classification of potential prostate cancer patients in two distinct categories, the high- and the low-risk group for PCa. The evaluation is based on randomly generated surrogate data for the biomarker PSA, considering that reported epidemiological data indicated that PSA values follow a lognormal distribution. In addition, four more biomarkers were considered, namely, PSAD (PSA density), PSAV (PSA velocity), PSA ratio, and Digital Rectal Exam evaluation (DRE), as well as patient age. Seven simple classification algorithms, namely, Decision Trees, Random Forests, Support Vector Machines, K-Nearest Neighbors, Logistic Regression, Naïve Bayes, and Artificial Neural Networks, were evaluated in terms of classification accuracy. In addition, three hybrid algorithms were developed and introduced in the present work, where Genetic Algorithms were utilized as a metaheuristic searching technique in order to optimize the training set, in terms of minimizing its size, to give optimal classification accuracy for the simple algorithms including K-Nearest Neighbors, a K-means clustering algorithm, and a genetic clustering algorithm. Results indicated that prostate cancer cases can be classified with high accuracy, even by the use of small training sets, with sizes that could be even smaller than 30% of the dataset. Numerous computer experiments indicated that the proposed training set minimization does not cause overfitting of the hybrid algorithms. Finally, an easy-to-use Graphical User Interface (GUI) was implemented, incorporating all the evaluated algorithms and the decision-making procedure.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3