Role of Activated Carbon Precursor for Mercury Oxidation and Removal: Oxidized Surface and Carbene Site Interaction

Author:

Rodriguez Regina,Contrino Domenic,Mazyck David

Abstract

Activated carbon (AC) is widely accepted for the removal of inorganic contaminants like mercury; however, the raw material used in the production of activated carbon is not always taken into consideration when evaluating its efficacy. Mercury oxidation and adsorption mechanisms governed by carbene sites are more likely to occur when graphitic-like activated carbons (such as those produced from high-ranking coals) are employed versus lignocellulosic-based ACs; this is likely due to the differences in carbon structures where lignocellulosic materials are less aromatic. In this research, the team studied bituminous coal-based ACs in comparison to coconut shell and wood-based (both less aromatic) ACs for elemental mercury removal. Nitric acid of 0.5 M, 1 M, and 5 M concentrations along with 10 M hydrogen peroxide were used to oxidize the surface of the ACs. Boehm titrations and FTIR analysis were used to quantify the addition of functional groups on the activated carbons. A trend was observed herein, resulting in increasing nitric acid molarity and an increased quantity of oxygen-containing functional groups. Gas-phase mercury removal mechanisms including physisorption, oxygen functional groups, and carbene sites were evaluated. The results showed significantly better elemental mercury removal in the gas phase with a bituminous coal-based AC embodying similar physical and chemical characteristics to that of its coconut shell-based counterpart. The ACs treated with various oxidizing agents to populate oxygen functional groups on the surface showed increased mercury removal. It is hypothesized that nitric acid treatment creates oxygen functional groups and carbene sites, with carbene sites being more responsible for mercury removal. Heat treatments post-oxidation with nitric acid showed remarkable results in mercury removal. This process created free carbene sites on the surface and shows that carbene sites are more reactive to mercury adsorption than oxygen. Overall, physisorption and oxygen functional groups were also dismissed as mercury removal mechanisms, leaving carbene-free sites as the most compelling mechanism.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference60 articles.

1. Economics of Mercury Control;Sloss,2008

2. Mercury Oxidation via Chlorine, Bromine, and Iodine under Atmospheric Conditions: Thermochemistry and Kinetics

3. Full Scale Calcium Bromide Injection with Subsequent Mercury Oxidation and Removal within Wet Flue Gas Desulphurization System: Experience at a 700 MW Coal-Fired Power Facility;Berry,2012

4. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

5. Bromine Chloride as an Oxidant to Improve Elemental Mercury Removal from Coal-Fired Flue Gas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3