Target Search for Joint Local and High-Level Semantic Information Based on Image Preprocessing Enhancement in Indoor Low-Light Environments

Author:

Tang Huapeng12,Qin Danyang12ORCID,Yang Jiaqiang12,Bie Haoze12,Li Yue1,Zhu Yong1,Ma Lin3ORCID

Affiliation:

1. Department of Electronic and Communication Engineering, Heilongjiang University, Harbin 150080, China

2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

3. Department of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

In indoor low-light environments, the lack of light makes the captured images often suffer from quality degradation problems, including missing features in dark areas, noise interference, low brightness, and low contrast. Therefore, the feature extraction algorithms are unable to extract the feature information contained in the images accurately, thereby hindering the subsequent target search task in this environment and making it difficult to determine the location information of the target. Aiming at this problem, a joint local and high-level semantic information (JLHS) target search method is proposed based on joint bilateral filtering and camera response model (JBCRM) image preprocessing enhancement. The JBCRM method improves the image quality by highlighting the dark region features and removing the noise interference in order to solve the problem of the difficult extraction of feature points in low-light images, thus providing better visual data for subsequent target search tasks. The JLHS method increases the feature matching accuracy between the target image and the offline database image by combining local and high-level semantic information to characterize the image content, thereby boosting the accuracy of the target search. Experiments show that, compared with the existing image-enhancement methods, the PSNR of the JBCRM method is increased by 34.24% at the highest and 2.61% at the lowest. The SSIM increased by 63.64% at most and increased by 12.50% at least. The Laplacian operator increased by 54.47% at most and 3.49% at least. When the mainstream feature extraction techniques, SIFT, ORB, AKAZE, and BRISK, are utilized, the number of feature points in the JBCRM-enhanced images are improved by a minimum of 20.51% and a maximum of 303.44% over the original low-light images. Compared with other target search methods, the average search error of the JLHS method is only 9.8 cm, which is 91.90% lower than the histogram-based search method. Meanwhile, the average search error is reduced by 18.33% compared to the VGG16-based target search method. As a result, the method proposed in this paper significantly improves the accuracy of the target search in low-light environments, thus broadening the application scenarios of target search in indoor environments, and providing an effective solution for accurately determining the location of the target in geospatial space.

Funder

Fundamental Scientific Research Funds of Heilongjiang Province

National Natural Science Foundation of China

The Open Research Fund of National Mobile Communications Research Laboratory Southeast University

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3