Extraction of Urban Road Boundary Points from Mobile Laser Scanning Data Based on Cuboid Voxel

Author:

Wang Jingxue12,Dong Xiao1,Liu Guangwei3

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China

3. School of Mining, Liaoning Technical University, Fuxin 123000, China

Abstract

The accuracy of point cloud processing results is greatly dependent on the determination of the voxel size and shape during the point cloud voxelization process. Previous studies predominantly set voxel sizes based on point cloud density or the size of ground objects. Voxels are mostly considered square in shape by default. However, conventional square voxels are not applicable to all surfaces. This study proposes a method of using cuboid voxels to extract urban road boundary points using curb points as road boundary points. In comparison with conventional cubic voxels, cuboid voxels reduce the probability of mixed voxels at the road curb, highlight two geometric features of road curb voxels (i.e., normal vector and distribution dimension), and improve the accuracy of road curb point extraction. In this study, ground points were obtained using cloth simulation filtering. First, the cuboid-based voxelization of ground points was performed. Then, taking the voxel as a unit, two geometric features, namely, the normal vector of the voxel and the linear dimension of the point distribution in the voxel, were calculated. According to these geometric features, the voxels that met the conditions were regarded as candidate road curb voxels, and the points in them as candidate road curb points. Afterward, filtering was applied using the intensity value to eliminate the bottom points of fences, street trees, and other ground objects in the candidate road curb points. Finally, noise points were eliminated according to the clustering results of the density based spatial clustering of applications with noise (DBSCAN) algorithm. In this study, point cloud data obtained by the SSW vehicle-mounted mobile mapping system and three-point cloud datasets in the IQmulus & TerraMobilita competition dataset were used to experimentally extract road curbs. Results showed that this method could effectively extract road curb points as the precision of the four groups of data results was over 90% and the quality coefficient reached over 75%.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Liaoning Province Applied Basic Research Program

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3