Predicting the Aggregate Mobility of a Vehicle Fleet within a City Graph

Author:

Sánchez-Rada J. Fernando12ORCID,Vila-Rodríguez Raquel2,Montes Jesús3ORCID,Zufiria Pedro J.24ORCID

Affiliation:

1. Departamento de Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28006 Madrid, Spain

2. Cátedra Cabify, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

3. Cabify, 28002 Madrid, Spain

4. Departamento Matemática Aplicada a las TIC, Information Processing and Telecommunications Center (IPTC), ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Predicting vehicle mobility is crucial in domains such as ride-hailing, where the balance between offer and demand is paramount. Since city road networks can be easily represented as graphs, recent works have exploited graph neural networks (GNNs) to produce more accurate predictions on real traffic data. However, a better understanding of the characteristics and limitations of this approach is needed. In this work, we compare several GNN aggregated mobility prediction schemes to a selection of other approaches in a very restricted and controlled simulation scenario. The city graph employed represents roads as directed edges and road intersections as nodes. Individual vehicle mobility is modeled as transitions between nodes in the graph. A time series of aggregated mobility is computed by counting vehicles in each node at any given time. Three main approaches are employed to construct the aggregated mobility predictors. First, the behavior of the moving individuals is assumed to follow a Markov chain (MC) model whose transition matrix is inferred via a least squares estimation procedure; the recurrent application of this MC provides the aggregated mobility prediction values. Second, a multilayer perceptron (MLP) is trained so that—given the node occupation at a given time—it can recursively provide predictions for the next values of the time series. Third, we train a GNN (according to the city graph) with the time series data via a supervised learning formulation that computes—through an embedding construction for each node in the graph—the aggregated mobility predictions. Some mobility patterns are simulated in the city to generate different time series for testing purposes. The proposed schemes are comparatively assessed compared to different baseline prediction procedures. The comparison illustrates several limitations of the GNN approaches in the selected scenario and uncovers future lines of investigation.

Funder

Ministerio de Ciencia e Innovación de España

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3