Evaluating Diffusion Models for the Automation of Ultrasonic Nondestructive Evaluation Data Analysis

Author:

Torenvliet Nick1,Zelek John1

Affiliation:

1. Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

We develop decision support and automation for the task of ultrasonic non-destructive evaluation data analysis. First, we develop a probabilistic model for the task and then implement the model as a series of neural networks based on Conditional Score-Based Diffusion and Denoising Diffusion Probabilistic Model architectures. We use the neural networks to generate estimates for peak amplitude response time of flight and perform a series of tests probing their behavior, capacity, and characteristics in terms of the probabilistic model. We train the neural networks on a series of datasets constructed from ultrasonic non-destructive evaluation data acquired during an inspection at a nuclear power generation facility. We modulate the partition classifying nominal and anomalous data in the dataset and observe that the probabilistic model predicts trends in neural network model performance, thereby demonstrating a principled basis for explainability. We improve on previous related work as our methods are self-supervised and require no data annotation or pre-processing, and we train on a per-dataset basis, meaning we do not rely on out-of-distribution generalization. The capacity of the probabilistic model to predict trends in neural network performance, as well as the quality of the estimates sampled from the neural networks, support the development of a technical justification for usage of the method in safety-critical contexts such as nuclear applications. The method may provide a basis or template for extension into similar non-destructive evaluation tasks in other industrial contexts.

Publisher

MDPI AG

Reference23 articles.

1. Advanced ultrasonic “Probability of Detection” curves for designing in-service inspection intervals;Carboni;Int. J. Fatigue,2016

2. Cantero-Chinchilla, S., Wilcox, P.D., and Croxford, A.J. (2021). Deep learning in automated ultrasonic NDE—Developments, axioms and opportunities. arXiv.

3. Hastie, T., Tibshirani, R., Friedman, J.H., and Friedman, J.H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.

4. Liu, J., Shen, Z., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. (2021). Towards out-of-distribution generalization: A survey. arXiv.

5. Csdi: Conditional score-based diffusion models for probabilistic time series imputation;Tashiro;Adv. Neural Inf. Process. Syst.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3