A Novel Fuzzy Controller for Visible-Light Camera Using RBF-ANN: Enhanced Positioning and Autofocusing

Author:

Zhou Junpeng,Xue Letang,Li Yan,Cao Lihua,Chen Changqing

Abstract

To obtain high-precision for focal length fitting and improve the visible-light camera autofocusing speed, simultaneously, the backlash caused by gear gaps is eliminated. We propose an improved RBF (Radical Basis Function) adaptive neural network (ANN) FUZZY PID (Proportional Integral Derivative) position closed-loop control algorithm to achieve the precise positioning of zoom and focus lens groups. Thus, the Levenberg–Marquardt iterative algorithm is used to fit the focal length, and the improved area search algorithm is applied to achieve autofocusing and eliminate backlash. In this paper, we initially adopt an improved RBF ANN fuzzy PID control algorithm in the position closed-loop in the visible-light camera position and velocity double closed-loop control system. Second, a similar triangle method is used to calibrate the focal length of the visible-light camera system, and the Levenberg–Marquardt iterative algorithm is used to fit the relation of the zoom potentiometer code values and the focal length to achieve the zoom position closed-loop control. Finally, the improved area search algorithm is used to achieve fast autofocusing and acquire clear images. The experimental results show that the ITAE (integrated time and absolute error) performance index of the improved RBF ANN fuzzy PID control algorithm is improved by more than two orders of magnitude as compared with the traditional fuzzy PID control algorithm, and the settling time is 6.4 s faster than that of the traditional fuzzy PID control. Then, the Levenberg–Marquardt iterative algorithm has a fast convergence speed, and the fitting precision is high. The quintic polynomial fitting results are basically consistent with the sixth-degree polynomial. The fitting accuracy is much better than that of the quadratic polynomial and exponential. Autofocusing requires less than 2 s and is improved by more than double that of the traditional method. The improved area search algorithm can quickly obtain clear images and solve the backlash problem.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3