Measurements and Models of 915 MHz LoRa Radio Propagation in an Underground Gold Mine

Author:

Branch PhilipORCID

Abstract

Underground mining increasingly relies on wireless communications for its operations. The move to automating many underground mining processes makes an understanding of the propagation characteristics of key wireless technologies underground a topic of considerable importance. LoRa has great potential for communications in underground mines, but data on its propagation are quite scarce. In this paper, we describe our measurements of LoRa radio propagation in an underground gold mine. We took measurements in an extraction tunnel with line of sight and in extraction and access tunnels without line of sight. We observed excellent propagation, both with and without line of sight. Our observations support claims by others that the steel-lined tunnels act as a waveguide. As well as reporting measurements, we also developed models of propagation. For line of sight, we show that pathloss is well modelled by a power law with pathloss index of 1.25 and that variability of signal strength is well modelled by a lognormal distribution. We also successfully modelled propagation without line of sight over short distances using a Fresnel Diffraction and Free Space model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Link Quality Analysis for Buried Pipeline Monitoring using LoRa;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

2. An analysis of wireless signal propagation in collapsed mine scenarios;Physical Communication;2024-02

3. Applications of IoT Framework for Underground Mine Safety: Limitations and Solutions;J MIN ENVIRON;2024

4. IoT Based Enhanced Safety Monitoring System for Underground Coal Mines Using LoRa Technology;Lecture Notes in Networks and Systems;2024

5. A LoRa-Based Monitoring System for Agriculture;2023 33rd International Telecommunication Networks and Applications Conference;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3