Computer-Aided Diagnosis Methods for High-Frequency Ultrasound Data Analysis: A Review

Author:

Czajkowska JoannaORCID,Borak Martyna

Abstract

Over the last few decades, computer-aided diagnosis systems have become a part of clinical practice. They have the potential to assist clinicians in daily diagnostic tasks. The image processing techniques are fast, repeatable, and robust, which helps physicians to detect, classify, segment, and measure various structures. The recent rapid development of computer methods for high-frequency ultrasound image analysis opens up new diagnostic paths in dermatology, allergology, cosmetology, and aesthetic medicine. This paper, being the first in this area, presents a research overview of high-frequency ultrasound image processing techniques, which have the potential to be a part of computer-aided diagnosis systems. The reviewed methods are categorized concerning the application, utilized ultrasound device, and image data-processing type. We present the bridge between diagnostic needs and already developed solutions and discuss their limitations and future directions in high-frequency ultrasound image analysis. A search was conducted of the technical literature from 2005 to September 2022, and in total, 31 studies describing image processing methods were reviewed. The quantitative and qualitative analysis included 39 algorithms, which were selected as the most effective in this field. They were completed by 20 medical papers and define the needs and opportunities for high-frequency ultrasound application and CAD development.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Wearable Healthcare Monitoring Framework;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-09-07

2. Expert-Level Reliability of Automated Skin Ultrasonography Segmentation;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

3. FPGA Implementation of Image Registration Using Accelerated CNN;Sensors;2023-07-21

4. AI-Assisted Ultrasound for the Early Diagnosis of Antibody-Negative Autoimmune Thyroiditis;Journal of Multidisciplinary Healthcare;2023-06

5. Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets;Sensors;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3