Design of 3D Virtual Reality in the Metaverse for Environmental Conservation Education Based on Cognitive Theory

Author:

Lo Shih-CheORCID,Tsai Hung-HsuORCID

Abstract

Background: Climate change causes devastating impacts with extreme weather conditions, such as flooding, polar ice caps melting, sea level rise, and droughts. Environmental conservation education is an important and ongoing project nowadays for all governments in the world. In this paper, a novel 3D virtual reality architecture in the metaverse (VRAM) is proposed to foster water resources education using modern information technology. Methods: A quasi-experimental study was performed to observe a comparison between learning involving VRAM and learning without VRAM. The 3D VRAM multimedia content comes from a picture book for learning environmental conservation concepts, based on the cognitive theory of multimedia learning to enhance human cognition. Learners wear VRAM helmets to run VRAM Android apps by entering the immersive environment for playing and/or interacting with 3D VRAM multimedia content in the metaverse. They shake their head to move the interaction sign to initiate interactive actions, such as replaying, going to consecutive video clips, displaying text annotations, and replying to questions when learning soil-and-water conservation course materials. Interactive portfolios of triggering actions are transferred to the cloud computing database immediately by the app. Results: Experimental results showed that participants who received instruction involving VRAM had significant improvement in their flow experience, learning motivation, learning interaction, self-efficacy, and presence in learning environmental conservation concepts. Conclusions: The novel VRAM is highly suitable for multimedia educational systems. Moreover, learners’ interactive VRAM portfolios can be analyzed by big-data analytics to understand behaviors for using VRAM in the future to improve the quality of environmental conservation education.

Funder

National Science and Technology Council, Taiwan

Soil and Water Conservation Bureau, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3