Thermalization of Mesh Reinforced Ultra-Thin Al-Coated Plastic Films: A Parametric Study Applied to the Athena X-IFU Instrument

Author:

Montinaro Nicola12ORCID,Sciortino Luisa2ORCID,D’Anca Fabio2,Lo Cicero Ugo2ORCID,Bozzo Enrico3ORCID,Paltani Stéphane3ORCID,Todaro Michela2ORCID,Barbera Marco4ORCID

Affiliation:

1. Dipartimento di Ingegneria, Università Degli Studi di Palermo, Viale delle Scienze, Edificio 8, 90128 Palermo, Italy

2. Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy

3. Département D’astronomie, Faculté des Sciences, Université de Genève, Chemin d’Ecogia 16, 1290 Versoix, Switzerland

4. Dipartimento di Fisica e Chimica-Emilio Segrè, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy

Abstract

The X-ray Integral Field Unit (X-IFU) is one of the two focal plane detectors of Athena, a large-class high energy astrophysics space mission approved by ESA in the Cosmic Vision 2015–2025 Science Program. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that operate at ~100 mK inside a sophisticated cryostat. To prevent molecular contamination and to minimize photon shot noise on the sensitive X-IFU cryogenic detector array, a set of thermal filters (THFs) operating at different temperatures are needed. Since contamination already occurs below 300 K, the outer and more exposed THF must be kept at a higher temperature. To meet the low energy effective area requirements, the THFs are to be made of a thin polyimide film (45 nm) coated in aluminum (30 nm) and supported by a metallic mesh. Due to the small thickness and the low thermal conductance of the material, the membranes are prone to developing a radial temperature gradient due to radiative coupling with the environment. Considering the fragility of the membrane and the high reflectivity in IR energy domain, temperature measurements are difficult. In this work, a parametric numerical study is performed to retrieve the radial temperature profile of the larger and outer THF of the Athena X-IFU using a Finite Element Model approach. The effects on the radial temperature profile of different design parameters and boundary conditions are considered: (i) the mesh design and material, (ii) the plating material, (iii) the addition of a thick Y-cross applied over the mesh, (iv) an active heating heat flux injected on the center and (v) a Joule heating of the mesh. The outcomes of this study have guided the choice of the baseline strategy for the heating of the Athena X-IFU THFs, fulfilling the stringent thermal specifications of the instrument.

Funder

Italian Space Agency

European Union’s Horizon 2020 Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3