Improved Error-Based Ensemble Learning Model for Compressor Performance Parameter Prediction

Author:

Miao Xinguo1ORCID,Liu Lei2,Wang Zhiyong3,Chen Xiaoming1ORCID

Affiliation:

1. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian116024, China

2. Design Institute, Shengu Group, Shenyang 110023, China

3. Beijing Pipe Co., Ltd., PipeChina Group, Beijing 100020, China

Abstract

Large compressors have complex structures and constantly changing operating conditions. It is challenging to build physical models of compressors to analyse their performance parameters. An improved error-based stacked ensemble learning prediction model is proposed in this work. This model simplifies the modelling steps in a data-driven manner and obtains accurate prediction results. An enhanced integrated model employs K-fold cross-validation to assign dataset weights based on validation set errors, achieving a 12.4% reduction in average output error. Additionally, the output error of the meta-model undergoes a Box–Cox transformation for error compensation, decreasing the average output error by 14.0%. The Stacking model, combining the above improvements, notably reduces the root-mean-square errors for power, surge, and blocking boundaries by 24.2%, 20.6%, and 23.3%, respectively. This integration significantly boosts prediction accuracy.

Funder

R&D Fund of Beijing Pipe Co., Ltd.

Publisher

MDPI AG

Reference26 articles.

1. Study on the natural gas consumption and its change prediction;Ye;J. Phys. Conf. Ser.,2020

2. Study on the maintenance scheduling model for compressor units of long-distance natural gas networks considering actual maintenance demands;Zhou;J. Nat. Gas Sci. Eng.,2021

3. A critical review on optimization parameters and techniques for gas pipeline operation profitability;Arya;J. Pet. Explor. Prod. Technol.,2022

4. Galvas, M.R. (2024, April 24). Computer Program for Predicting Off-Design Performance of Centrifugal Compressors. 1974, No. LEW-12186. Available online: https://api.semanticscholar.org/CorpusID:60741619.

5. The effects of gas models on the predicted performance and flow of a centrifugal refrigeration compressor stage;Wang;Technol. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3