Investigation of the Combustion Properties of Ethylene in Porous Materials Using Numerical Simulations

Author:

Tu Linyu1,Ding Siyu12,Li Shefeng123,Zhang Haitao12,Feng Wei24

Affiliation:

1. School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China

2. Pilot Plant of Eco-Environment Chemical Industry and Carbon-Neutral Transformative Technologies, Wuhan 430023, China

3. Hubei Provincial Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Wuhan 430023, China

4. Wuhan Thought of Forging Anew Environment Technology Co., Ltd., Wuhan 430056, China

Abstract

As industrial modernization advances rapidly, the need for energy becomes increasingly urgent. This paper aims to enhance the current burner design by optimizing the combustion calorific value, minimizing pollutant emissions, and validating the accuracy of the burner model using experimental data from previous studies. The enhanced porous medium burner model is used to investigate the burner’s combustion and pollutant emission characteristics at various flow rates, equivalence ratios, combustion orifice sizes, and porosity of porous media. In comparison with the previous model, the combustion traits during ethylene combustion and the emission properties of pollutants under various operational circumstances have been enhanced with the enhanced porous medium burner model. The maximum temperature of ethylene combustion in the enhanced model is 174 k higher than that before the improvement, and the CO emissions are reduced by 31.9%. It is believed that the findings will serve as a guide for the practical implementation of porous media combustion devices.

Funder

Supporting Enterprise Technological Innovation and Development in Hubei Province

2022 Central Guidance Local Science and Technology Development Fund

Key Research and Development Program of Hubei Province

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3