Optimal Scheduling of Off-Site Industrial Production in the Context of Distributed Photovoltaics

Author:

Xie Sizhe1,Li Yao1,Wang Peng1

Affiliation:

1. Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Abstract

A reasonable allocation of production schedules and savings in overall electricity costs are crucial for large manufacturing conglomerates. In this study, we develop an optimization model of off-site industrial production scheduling to address the problems of high electricity costs due to the irrational allocation of production schedules on the demand side of China’s power supply, and the difficulty in promoting industrial and commercial distributed photovoltaic (PV) projects in China. The model makes full use of the conditions of different PV resources and variations in electricity prices in different places to optimize the scheduling of industrial production in various locations. The model is embedded with two sub-models, i.e., an electricity price prediction model and a distributed photovoltaic power cost model to complete the model parameters, in which the electricity price prediction model utilizes a Long Short-Term Memory (LSTM) neural network. Then, the particle swarm optimization algorithm is used to solve the optimization model. Finally, the production data of two off-site pharmaceutical factories belonging to the same large group of enterprises are substituted into the model for example analysis, and it is concluded that the optimization model can significantly reduce the electricity consumption costs of the enterprises by about 7.9%. This verifies the effectiveness of the optimization model established in this paper in reducing the cost of electricity consumption on the demand side.

Funder

Innovation and Entrepreneurship Training Program for College Students of North China Electric Power University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3