Global Genetic Algorithm for Automating and Optimizing Petroleum Well Deployment in Complex Reservoirs

Author:

Irawan Sonny1ORCID,Wayo Dennis Delali Kwesi1ORCID,Satyanaga Alfrendo2ORCID,Kim Jong2ORCID

Affiliation:

1. Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan

2. Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Locating petroleum-productive wells using informed geological data, a conventional means, has proven to be tedious and undesirable by reservoir engineers. The former numerical simulator required a lengthy trial-and-error process to manipulate the variables and uncertainties that lie on the reservoir to determine the best placement of the well. Hence, this paper examines the use of a global genetic algorithm (GA) to optimize the placement of wells in complex reservoirs, rather than relying on gradient-based (GB) methods. This is because GB approaches are influenced by the solution’s surface gradient and may only reach local optima, as opposed to global optima. Complex reservoirs have rough surfaces with high uncertainties, which hinders the traditional gradient-based method from converging to global optima. The explicit focus of this study was to examine the impact of various initial well placement distributions, the number of random solution sizes and the crossover rate on cumulative oil production, the optimization of the synthetic reservoir model created by CMG Builder, CMOST, and IMEX indicated that using a greater number of random solutions led to an increase in cumulative oil production. Despite the successful optimization, more generations are required to reach the optimal solution, while the application of GA on our synthetic model has proven efficient for well placement; however, different optimization algorithms such as the improved particle swarm (PSO) and grey wolf optimization (GWO) algorithms could be used to redefine well-placement optimization in CMG.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3