Optimal Design of Wearable Micro Thermoelectric Generator Working in a Height-Confined Space

Author:

Tang Kechen1,Yang Dongwang1,Xing Yubing1,Wang Jiang1,Hu Kai1,Yan Yonggao1,Zhang Qingjie1,Tang Xinfeng1

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

With the increasing development of self-powered wearable electronic devices, there is a growing interest in thermoelectric generators (TEGs). To achieve more comprehensive and reliable functionality of wearable devices, improving the power generation performance of thermoelectric devices will be the key. It has been shown that integrating a heat sink at the cold end of the TEG increases the effective temperature difference and, thus, maximizes the power output of the thermoelectric device. However, the space left for the power supply is often limited. How to optimize the integrated system of micro-thermoelectric generators and heat sinks in a height-confined space has become the key. In this study, we have established a corresponding model using a numerical calculation method, systematically studied the influence of TEG geometric size on the number of fins and fin height, and determined the optimal number of fins for the highest equivalent convective heat transfer coefficient corresponding to different fin heights. We also conducted the co-design of TEG and fin topological structure to study the effects of the ratio of leg height to fin height (l/H), the width of legs (w), and the number of thermoelectric leg pairs (N) on the maximum output power density per unit area (Pm1) and the maximum output power density per unit mass (Pm2) of the device. When N = 16, w = 0.3 mm, l/H = 2.5 (that is, l = 3.57 mm, H = 1.43 mm), and Pm1 reaches the maximum value of 30.5 μW/cm2; When N = 2, l/H = 0.25 and w = 0.3 mm, and Pm2 reaches a maximum value of 5.12 mW/g. The measured values of the open-circuit voltages of fabricated micro-TEGs with different thermoelectric leg heights (l = 0.49 mm, l = 1.38 mm, and l = 1.88 mm) are basically consistent with the simulated values. When N = 2, l = 0.49 mm, H = 3.74 mm, and w = 0.85 mm, and Pm2 reaches 0.44 mW/g. The results provide insights into the optimal design of wearable micro thermoelectric generator working in a height-confined space and highlight the importance of co-designing TEGs and fin topological structures for optimizing their performance.

Funder

National Natural Science Foundation of China

International Postdoctoral Exchange Fellowship Program

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3