Application of the WKB Theory to Investigate Electron Tunneling in Kek-Y Graphene

Author:

Iurov Andrii1,Zhemchuzhna Liubov12,Gumbs Godfrey23,Huang Danhong4

Affiliation:

1. Department of Physics and Computer Science, Medgar Evers College, The City University of New York, Brooklyn, NY 11225, USA

2. Department of Physics and Astronomy, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10065, USA

3. Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Spain

4. Space Vehicles Directorate, US Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, USA

Abstract

In this paper, we have constructed a WKB approximation for graphene having a Y-shaped Kekulé lattice distortion and a special folding of the K and K′ valleys, which leads to very specific linear energy dispersions with two non-equivalent pairs of subbands. These obtained semi-classical results, which include the action, electron momentum and wave functions, are utilized to analyze the dynamics of electron tunneling through non-square potential barriers. In particular, we explore resonant scattering of an electron by a potential barrier built on Kekulé-distorted graphene. Mathematically, a group of consecutive equations for a semi-classical action have been solved by following a perturbation approach under the condition of small strain-induced coupling parameter Δ0≪1 (a good fit to its actual value Δ0∽ 0.1). Specifically, we consider a generalized model for Kek-Y graphene with two arbitrary Fermi velocities. The dependence of the electron transmission amplitude on the potential profile V(x) and band parameters of Kekulé-patterned graphene has been explored and analyzed in detail.

Funder

TRADA-53-130 PSC-CUNY

Air Force Office of Scientific Research

Air Force Research Laboratory

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3