Mechanical Resistance of Different Implant Suprastructures: A Laboratory Study

Author:

Iliev Georgi1ORCID,Filtchev Dimitar1ORCID,Trifković Branka2ORCID,Jevremović Danimir3,Pavlova Zhanina1ORCID,Slavkov Svetoslav4,Stoeva Daniela1ORCID

Affiliation:

1. Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University, 1431 Sofia, Bulgaria

2. Clinic for Prosthodontics, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia

3. School of Dentistry, University Business Academy, 26000 Pančevo, Serbia

4. Cranio Maxillo Facial Clinical Department, Hospital “Pirogov”, 1606 Sofia, Bulgaria

Abstract

Background: Appropriate abutment selection according to the individual specificities of each patient is a leading factor in achieving high aesthetic results. Standardized titanium abutments are the most widely used due to their easy use and low cost. It is considered that customized abutments can eliminate many of the complications seen with factory abutments in prosthetic treatment. The purpose of this study is to evaluate whether customized abutments have better mechanical behavior in laboratory settings than standard ones. The null hypothesis is that customized abutments have better resistance to cyclic load and compression than factory abutments. Methods: The study model includes thirty implant suprastructure samples, fabricated digitally, divided into three groups according to the type of implant abutment and the used material: Group A (control group) comprised monolithic implant crowns made of zirconium dioxide and a titanium base; Group B (test group) comprised monolithic implant crowns made of zirconia implant crowns and a customized titanium alloy abutment; and Group C (test group) comprised monolithic implant crowns made of lithium disilicate and a customized titanium alloy abutment. The samples were subjected to dynamic load in a computer-controlled 2-axis machine that simulated masticatory movements, Chewing Simulator CS-4 (SD-Mechatronik, Westerham, Germany), for 250,000 cycles at a frequency of 2 Hz. The samples were then subjected to compressive strength testing in an Instron M 1185 universal testing machine. A metal steel disc was used as an antagonist, exerting pressure at a rate of 2 mm/min at room temperature on each sample. After conducting the laboratory tests, the samples were examined by an experienced expert under a Carl Zeiss microscope (Carl Zeiss Microscopy GmbH, Jena, Germany). Results: All samples were found to have passed the fatigue test in the masticatory simulator without any of the listed complications. The average value of the compressive strength at which the structures in each group fracture is as follows: Group A, 5669.2; Group B, 3126.5; and Group C, 1850.6. Based on the average values, it can be concluded that the combination of materials used in Group A has the greatest resistance. Conclusion: The weak link in the prosthetic complex consisting of a crown and abutment seems to be the crown. No abutment failure was found regardless of the type. However, monolithic zirconia crowns over standard titanium abutments withstand higher mechanical forces compared with zirconia and lithium disilicate crowns over customized ones. Detailed studies in clinical settings may provide more in-depth information on this issue.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3