Affiliation:
1. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia
Abstract
Internet of Things (IoT) technologies serve as a backbone of cutting-edge intelligent systems. Machine Learning (ML) paradigms have been adopted within IoT environments to exploit their capabilities to mine complex patterns. Despite the reported promising results, ML-based solutions exhibit several security vulnerabilities and threats. Specifically, Adversarial Machine Learning (AML) attacks can drastically impact the performance of ML models. It also represents a promising research field that typically promotes novel techniques to generate and/or defend against Adversarial Examples (AE) attacks. In this work, a comprehensive survey on AML attack and defense techniques is conducted for the years 2018–2022. The article investigates the employment of AML techniques to enhance intrusion detection performance within the IoT context. Additionally, it depicts relevant challenges that researchers aim to overcome to implement proper IoT-based security solutions. Thus, this survey aims to contribute to the literature by investigating the application of AML concepts within the IoT context. An extensive review of the current research trends of AML within IoT networks is presented. A conclusion is reached where several findings are reported including a shortage of defense mechanisms investigations, a lack of tailored IoT-based solutions, and the applicability of the existing mechanisms in both attack and defense scenarios.
Funder
initiative of DSR Graduate Students Research Support
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference106 articles.
1. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications;Alsheikh;IEEE Commun. Surv. Tutor.,2014
2. A Survey of Intrusion Detection Systems in Wireless Sensor Networks;Butun;IEEE Commun. Surv. Tutor.,2014
3. Machine learning in IoT security: Current Solutions and Future Challenges;Hussain;IEEE Commun. Surv. Tutor.,2020
4. A Survey of Adversarial Machine Learning in Cyber Warfare;Duddu;Def. Sci. J.,2018
5. Qiu, J., Wu, Q., Ding, G., Xu, Y., and Feng, S. (2016). A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process., 67.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献