Optimal Driving Model for Connected and Automated Electric Freight Vehicles in a Wireless Charging Scenario at Signalised Intersections

Author:

Wang Wenbo1ORCID,Fan Songhua2,Wang Zijian2,Yao Xinpeng2,Mu Kenan3

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710064, China

2. Shandong Key Laboratory of Smart Transportation (Preparation), Jinan 250014, China

3. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

Abstract

Electric freight vehicles have become an important means of transportation in connected and automated environments owing to their numerous advantages. However, the generally short driving range of connected and automated electric freight vehicles (CAEFVs) does not satisfy the growing transport demand. In this study, wireless charging technology is employed to construct a complex driving scenario including urban roads and dynamic wireless charging facilities. A combination of variable-scale elements consisting of vehicles, roads, and the environment is analysed hierarchically to develop a wireless charging scheme for urban transport systems. Using passage efficiency, energy consumption, and passenger comfort as the joint optimisation objectives, an optimal driving model for CAEFVs in wireless charging scenarios at signalised intersections combining scenario boundaries and vehicle dynamic constraints is proposed. Considering the differentiated charging needs of vehicles, this model is divided into a time priority strategy (TPS), balance priority strategy (BPS), and charging priority strategy (CPS). The obtained results reveal that the CPS is superior to the TPS in terms of the charging benefits but requires a longer travel time. Meanwhile, the BPS increases the charging benefits and passing efficiency. This study provides guidance for the deployment of wireless charging lanes with a high application value.

Funder

Open Project of Shandong Key Laboratory of Smart Transportation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3