XFilter: An Extension of the Integrity Measurement Architecture Based on Fine-Grained Policies

Author:

Litchfield Alan1ORCID,Du Weihua2

Affiliation:

1. Service and Cloud Computing Research Lab, Auckland University of Technology, Auckland 1010, New Zealand

2. Datacom, Wellington 6011, New Zealand

Abstract

The Integrity Measurement Architecture subsystem on the Linux platform is a critical security component in the kernel to ensure the integrity of the running system. However, the default Integrity Measurement Architecture policy mechanisms based on options such as file owner and FSMAGIC cannot achieve a file-level configuration. Although Integrity Measurement Architecture supports the Linux Security Module policy rules to be close to the goal of fine-grained configuration, it is not easy to be managed because the Linux Security Module was not originally designed for integrity measurement. Moreover, the Linux Security Module-based policy does not apply in some use cases considering the type of Mandatory Access Control tools chosen by users. This paper presents a new policy configuration option, named XFilter, that achieves a fine-grained policy configuration method. The XFilter includes two policy matching mechanisms, XLabel and XList, which share the same policy token created for XFilter exclusively. XLabel marks the files for measurement using a label in the file’s extended attribute (xattr). By contrast, XList stores the measurement information in a list of file paths. To simplify the deployment, an automatic configuration process is implemented for integrating into the package management system. The evaluation results suggest that both mechanisms satisfy the requirements of file-level IMA policy control and create a performance burden for system operation in the acceptable range. They also reveal a positive correlation between the increment of the system latency and the growth of the length of file paths list for the XList mechanism.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3