DA-FER: Domain Adaptive Facial Expression Recognition

Author:

Bie Mei12ORCID,Xu Huan1,Liu Quanle1ORCID,Gao Yan1,Song Kai2ORCID,Che Xiangjiu1

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Institute of Education, Changchun Normal University, Changchun 130032, China

Abstract

Facial expression recognition (FER) is an important field in computer vision with many practical applications. However, one of the challenges in FER is dealing with small sample data, where the number of samples available for training machine learning algorithms is limited. To address this issue, a domain adaptive learning strategy is proposed in this paper. The approach uses a public dataset with sufficient samples as the source domain and a small sample dataset as the target domain. Furthermore, the maximum mean discrepancy with kernel mean embedding is utilized to reduce the disparity between the source and target domain data samples, thereby enhancing expression recognition accuracy. The proposed Domain Adaptive Facial Expression Recognition (DA-FER) method integrates the SSPP module and Slice module to fuse expression features of different dimensions. Moreover, this method retains the regions of interest of the five senses to accomplish more discriminative feature extraction and improve the transfer learning capability of the network. Experimental results indicate that the proposed method can effectively enhance the performance of expression recognition. Specifically, when the self-collected Selfie-Expression dataset is used as the target domain, and the public datasets RAF-DB and Fer2013 are used as the source domain, the performance of expression recognition is improved to varying degrees, which demonstrates the effectiveness of this domain adaptive method.

Funder

National Natural Science Foundation of China

Science and Technology Development Plan of Jilin Province of China

Social Science Research of the Education Department of Jilin Province

Jilin Educational Scientific Research Leading Group

Humanities and Social Science Foundation of Changchun Normal University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3