Unbalance Detection in Induction Motors through Vibration Signals Using Texture Features

Author:

Calderon-Uribe Uriel1,Lizarraga-Morales Rocio A.2ORCID,Guryev Igor V.1ORCID

Affiliation:

1. Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico

2. Departamento de Arte y Empresa, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca 36885, Guanajuato, Mexico

Abstract

The detection of faults in induction motors has been one of the main challenges to the industry in recent years. An effective fault detection method is fundamental to ensure operational security and productivity. Different models for intelligent fault diagnosis have been recently proposed. However, not all of them are accessible for some manufacturing processes because of the black-box approach, the complexity of hyperparameter tuning, high-dimensionality feature vectors, and the need for sophisticated computational resources. In this paper, a method for the detection of an unbalance fault in induction motors based on a low-dimensional feature vector and a low-complexity classification approach is proposed. The feature vector presented in this manuscript is based on texture features, which are a basic tool for image processing and image understanding. Nevertheless, texture features have not been explored as a powerful instrument for induction motor fault analysis. In this approach, texture features are used to analyze a set of vibration signals belonging to two different classes: an unbalanced motor and a healthy motor. Training-validation and testing stages are developed to build and evaluate the performance of the classifier, respectively. The results show higher accuracy and lower training time in comparison with different state-of-the-art approaches.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3