Recent Advancements in the Valorization of Agro-Industrial Food Waste for the Production of Nanocellulose

Author:

Nargotra Parushi1,Sharma Vishal12ORCID,Tsai Mei-Ling1,Hsieh Shu-Ling1ORCID,Dong Cheng-Di23ORCID,Wang Hui-Min David456ORCID,Kuo Chia-Hung17ORCID

Affiliation:

1. Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

2. Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

3. Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

4. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

5. Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan

6. Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan

7. Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan

Abstract

The rising climate change concerns over the excessive exploitation of non-renewable sources have necessitated the need for alternative renewable and eco-friendly resources for the production of innovative materials, achieving the targets of bioeconomy. Lignocellulosic biomass (LB) constituted by polymeric sugars and lignin is an abundantly available plant-based renewable material in the form of agro-industrial food waste and crop residues that can be exploited for the production of an array of value-added chemicals and bioproducts. Cellulose is the most abundant natural and biodegradable organic polymer on earth derived from LB, with wide scale applications in the lignocellulosic biorefineries and food industries. The negative effects of food waste from agro-industrial activities could be reduced through the recovery of cellulose from these wastes and converting it into valuable forms. However, the extraction of cellulose from LB is a difficult task owing to the recalcitrant nature of biomass that restricts the easy accessibility of cellulose for value addition. Therefore, a suitable cellulose extraction method through the fractionation of LB is necessary for a better cellulose yield. Furthermore, owing to the enormous potential of nanocellulose (NC), researchers are keenly interested in developing ecologically acceptable cellulose extraction methods. Cellulose nanofibrils and nanocrystals confer excellent mechanical properties, non-toxic characteristics and biodegradability, due to which they possess wide-scale applications in diverse industrial sectors. The current review emphasizes the potential role of cellulose extraction and NC production from agro-food waste. The different pretreatment methods for their extraction from LB are outlined. The applications of nanocellulose in different areas are also discussed. The review also highlights the recent trends, challenges and future directions in the development of cellulose and NC-based commercial products.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3