VSFCM: A Novel Viewpoint-Driven Subspace Fuzzy C-Means Algorithm

Author:

Tang Yiming123ORCID,Chen Rui12,Xia Bowen12

Affiliation:

1. School of Computer and Information, Hefei University of Technology, Hefei 230601, China

2. Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine, Hefei 230601, China

3. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6R 2V4, Canada

Abstract

Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of clustering algorithms and have a weak ability to handle high-dimensional data. To solve these problems, we developed the viewpoint-driven subspace fuzzy c-means (VSFCM) algorithm. Firstly, we propose a new cut-off distance. Based on this, we establish the cut-off distance-induced clustering initialization (CDCI) method and use it as a new strategy for cluster center initialization and viewpoint selection. Secondly, by taking the viewpoint obtained by CDCI as the entry point of knowledge, a new fuzzy clustering strategy driven by knowledge and data is formed. Based upon these, we put forward the VSFCM algorithm combined with viewpoints, separation terms, and subspace fuzzy feature weights. Moreover, compared with the symmetric weights obtained by other subspace clustering algorithms, the weights of the VSFCM algorithm exhibit significant asymmetry. That is, they assign greater weights to features that contribute more, which is validated on the artificial dataset DATA2 in the experimental section. The experimental results compared with multiple advanced clustering algorithms on the three types of datasets validate that the proposed VSFCM algorithm has the best performance in five indicators. It is demonstrated that the initialization method CDCI is more effective, the feature weight allocation of VSFCM is more consistent with the asymmetry of experimental data, and it can achieve better convergence speed while displaying better clustering efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Program of Anhui Province

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3