Green Production of a High-Value Branched-Chain Diester: Optimization Based on Operating Conditions and Economic and Sustainability Criteria

Author:

Montiel Claudia1,Gimeno-Martos Silvia1,Ortega-Requena Salvadora1,Serrano-Arnaldos Mar1,Máximo Fuensanta1ORCID,Bastida Josefa1ORCID

Affiliation:

1. Chemical Engineering Department, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain

Abstract

Branched-chain esters (BCEs) have found a large number of applications in cosmetics. Among them, neopentyl glycol dilaurate (NPGDL) stands out as an emollient, emulsifier, and skin-conditioning agent. This work presents the synthesis of NPGDL in a solvent-free medium using the two most common immobilized lipases: Novozym® 40086 (Rml) and Novozym® 435 (CalB). Results proved that the former biocatalyst has lower activity and certain temperature deactivation, although conversions ≥ 90% were obtained at 60 °C and 7.5% of catalyst. On the other hand, optimal reaction conditions for Novozym® 435 are 3.75% w/w of the immobilized derivative at 80 °C. Under optimal conditions, the process productivities were 0.105 and 0.169 kg NPGDL/L h, respectively. In order to select the best conditions for NPGDL production, studies on the reuse of the derivative and cost estimation have been performed. Economic study shows that biocatalytic processes can be competitive when lipases are reused for five cycles, yielding biocatalyst productivities of 56 and 122 kg NPGDL/kg biocatalyst using Novozym® 40086 and Novozym® 435, respectively. The final choice will be based on both economic and sustainability criteria. Green metric values using both biocatalysts are similar but the product obtained using Novozym® 40086 is 20% cheaper, making this alternative the best option.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3