Hydraulic Prototype Observation Tests on Reconstructed Energy Dissipation Facilities

Author:

Wei Hai1,Tao Kaiyun1,Luo Yongqin1,Song Bingyue1,Wang Mingming1,Xu Juncai23ORCID

Affiliation:

1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Anhui Provincial International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures, Chuzhou 239099, China

3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

In order to assess the effectiveness of reconstructed energy dissipation facilities (EDFs) in open channels at hydropower stations, hydraulic prototype observation (HPO) tests are conducted to investigate the characteristics of discharge flow and the dynamic response of hydraulic structures during sluice opening periods. While hydraulic model tests (HMTs) are commonly utilized in laboratory settings to study these characteristics, experimental conditions cannot fully replicate the real-world operations of such structures. HPO tests are employed to examine flow patterns, free water surface fluctuations, and pulsating pressure changes in open channels under varying flood discharge conditions (FDCs). Flow patterns in open channels are recorded via video; free water surface fluctuations are measured using total-station and laser rangefinder instruments; and pulsating pressure is monitored with pressure sensors and data collection systems. Flow pattern observations concentrate on addressing adverse water flow phenomena, such as turbulence, surging, and backflow. The examination of free water surface fluctuations aims to verify whether the height of the guide wall along the open channel fulfills the necessary requirements and assess the effectiveness of energy dissipation of the EDF. To comprehend the variations in pulsating pressure within the continuous sill and the base slab, nine measurement points were established across three sections perpendicular to the continuous sill’s axis on three distinct elevation levels. Additionally, three measurement points were positioned on the reinforced base slab along the open channel’s axis. The findings indicate that the impact on the continuous sill caused by discharging water is more severe when the discharge rate of a single sluice gate reaches 500 m3/s than in other FDCs. To ensure the safe operation of open channels during flood discharge, the discharge rate for each sluice gate should be reduced to 250 m3/s. The dominant pulsation induced by discharge flow falls within the low-frequency range, resulting in minimal adverse effects on the stilling basin and guide wall. The flow pattern within the stilling basin remains stable under various FDCs, with no significant adverse hydraulic phenomena observed. Parameters, including free water surface fluctuations and pulsating pressure variations, lie within acceptable ranges. These observations suggest that the arrangement of the reconstructed energy dissipation facilities is generally effective following technical reconstruction.

Funder

Yunnan Natural Science Foundation of China

Anhui international joint research center of data diagnosis and smart maintenance on bridge structures

Open Foundation for Key Laboratory of Yunnan University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3