Comparison of Different-Energy-Level Abrasion in Los Angeles and Micro-Deval Apparatuses Using Mass Loss and Rounding of Sediment Particles

Author:

Kuzmanić Tamara1ORCID,Lebar Klaudija1ORCID,Mikoš Matjaž1ORCID

Affiliation:

1. Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova Cesta 2, 1000 Ljubljana, Slovenia

Abstract

During the routing of coarse particles in sedimentary environments, the particles are subjected to abrasion, leading to mass loss and changes in the particles’ morphology. The particles become more spherical, rounded, and smooth. Here, particles’ (quarried dolomite) morphological evolution of three shape aspects (form, roundness, and texture) and the mass decreases obtained in two sets of experiments in two different setups are presented. Abrasion experiments were carried out in cycles. Between cycles, morphological parameters and mass losses were tracked. Abrasion was investigated with consideration of the energy and power the apparatuses used that the material was subjected to, in contrast to the often-used estimated travel distances or duration of the abrasion. The goal was to examine if the two setups can be comparable and inter-transferrable, also to other similar abrasion setups. The experimental equipment, a micro-Deval apparatus and a Los Angeles machine, are standardised and widely used. The applied tests were modified. Morphological/shape parameters were determined using dynamic image analysis. The results of the tests show the influence of machine power (energy introduction rate) on mass loss and morphological change. Los Angeles (high-energy) abrasion resulted in higher mass loss values than micro-Deval (low-energy) abrasion. The mass loss results can be brought to comparable values by a newly introduced mass- and power-dependent coefficient. Low-energy abrasion resulted in faster rounding than high-energy abrasion, whereas form stayed nearly the same. In contrast, form changed rapidly during high-energy abrasion.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent UL FGG Contributions to the 2020 Kyoto Commitment;Progress in Landslide Research and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3