Mechanical Incipient Fault Detection and Performance Analysis Using Adaptive Teager-VMD Method

Author:

Li Huipeng12ORCID,Xu Bo12ORCID,Zhou Fengxing1,Huang Pu2

Affiliation:

1. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China

Abstract

For large rotating machinery with low speed and heavy load, the incipient fault characteristics of rolling bearings are particularly weak, making it difficult to identify them effectively by direct signal processing methods. To resolve this issue, we propose a novel approach to detecting incipient fault features that combines signal energy enhancement and signal decomposition. First, the structure of a conventional Teager algorithm is modified to further increase the energy of the micro-impact component and hence the impact amplitude. Then, a kind of composite chaotic mapping is constructed to extend the original fruit fly optimization algorithm (FOA) framework, improving the FOA’s randomness and search power. The effective intrinsic mode functions (IMFs) are determined by searching for the optimal combination values of the key parameters of the variational mode decomposition (VMD) with the improved chaotic FOA (ICFOA). The kurtosis index is then used to select the IMFs that are most relevant to the fault characteristics information. Finally, the sensitive components are analyzed to identify multiple early fault characteristics and determine detailed information about the faults. Moreover, the approach is evaluated by a simulation signal and a measured signal. The comprehensive evaluation indicates that the approach has clear advantages over other excellent methods in extracting the incipient fault feature information of the equipment and has great potential for application in engineering.

Funder

National Natural Science Foundation of China

Research Project of Hubei Provincial Department of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3