Instability Induced by Random Background Noise in a Delay Model of Landslide Dynamics

Author:

Kostić Srđan1,Vasović Nebojša2,Todorović Kristina3,Prekrat Dragan3ORCID

Affiliation:

1. Jaroslav Černi Water Institute, Jaroslava Černog 80, 11226 Belgrade, Serbia

2. Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia

3. Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia

Abstract

In the present paper, we propose a new model for landslide dynamics, in the form of the spring-block mechanical model, with included delayed interaction and the effect of the background seismic noise. The introduction of the random noise in the model of landslide dynamics is confirmed by the surrogate data testing of the recorded ambient noise within the existing landslide in Serbia. The performed research classified the analyzed recordings as linear stationary stochastic processes with Gaussian inputs. The proposed mechanical model is described in the form of a nonlinear dynamical system: a set of stochastic delay-differential equations. The solution of such a system is enabled by the introduction of mean-field approximation, which resulted in a mean-field approximated model whose dynamics are qualitatively the same as the dynamics of the starting stochastic system. The dynamics of the approximated model are analyzed numerically, with rather unexpected results, implying the positive effect of background noise on landslide dynamics. Particularly, the increase of the noise intensity requires higher values of spring stiffness and displacement delay for the occurrence of bifurcation. This confirms the positive stabilizing effect of the increase in noise intensity on the dynamics of the analyzed landslide model. Present research confirms the significant role of noise in landslides near the bifurcation point (e.g., creeping landslides).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3