Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland

Author:

Pawluszek-Filipiak KamilaORCID,Borkowski AndrzejORCID

Abstract

Underground coal exploitation often results in land-surface subsidence, the rate of which depends on geological characteristics, the mechanical properties of the rocks, and the applied extraction technology. Since mining-related subsidence is characterized by “fast” displacement and high nonlinearity, monitoring this process by using Interferometric Synthetic Aperture Radar (InSAR) is very challenging. The Small BAseline Subset (SBAS) approach needs to predefine an a priori deformation model to properly estimate an interferometric component related to displacements. As a consequence, there is a lack of distributed scatterers (DS) when the selected a priori deformation model deviates from the real deformation. The conventional differential SAR interferometry (DInSAR) approach does not have this limitation, since it does not need any deformation model. However, the accuracy of this technique is limited by factors related to spatial and temporal decorrelation, signal delays due to the atmospheric artifacts, and orbital or topographic errors. Therefore, this study presents the integration of DInSAR and SBAS techniques in order to leverage the advantages and overcome the disadvantages of both methods and to retrieve the complete deformation pattern over the investigated study area. The obtained results were evaluated internally and externally with leveling data. Results indicated that the Kriging-based integration method of DInSAR and SBAS can be effectively applied to monitor mining-related subsidence. The root-mean-square Error (RMSE) between modeled and measured deformation by InSAR was found to be 11 and 13 mm for vertical and horizontal displacements, respectively. Moreover, DInSAR technique as a cost-effective and complementary method to conventional geodetic techniques can be applied for effective monitoring fast mining subsidence. The minimum and maximum RMSE between DInSAR displacement and specific leveling profiles were found to be 0.9 and 3.2 cm, respectively. Since the SBAS processing failed in subsidence estimation in the area of maximum deformation rate, the deformation estimates outside the maximum rate could only be compared. In these areas, the good agreement between SBAS and DInSAR indicates that the SBAS technique could be reliable for monitoring the residual subsidence that surrounds the subsidence trough. Using the proposed approach, we detected subsidence of up to −1 m and planar displacements (east–west) of up to 0.24 m.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3